Все на свете познается Пятница, 26.04.2024, 03.55
Приветствую Вас Гость | RSS
Меню сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0


Статьи, коммент.
Мозг помнит все.
Мозг помнит все.
Мозг или искусственный интеллект?
Новости сайта
Covid 19/20
Вирусология
Генетика
Коммент к новостям
Вижу, "слышу", делаю!
Падать можно по-разному.
Падать можно по-разному.
Основы мироздания
Виды черных дыр
Антимир возможен?
Идеи меняющие Мир
Озарение.
Идейка, с линейку.
Собственное пространство.
Поле тяготения.
Движение в поле тяготения.
Читать, думать...
Физики,пространство ждет Вас!
Физики,"темная материя", на самом деле- прозрачна!!
Пишу вакуум, подразумеваю- эфир
И снова о преобразованиях
Термины- физика
Движение с ускорением.
Термины сингулярного пространства.
Правило Пуанкаре.
Закон сохранения плотности вакуума.
Здоровье человека

Блог.
Блог, обновление
Синдром чужой руки(1)
Мозг и Я, что мы можем?(5)
Очень много нового, но все как прежде.(2)
Коммент к блогу
Генератор сна.
Мозг и Я, что мы можем?
Синдром чужой руки
Статьи
Зачем Мирозданию человек.
Снегурочка(фантастика)
Пульсационные» теории
Николай Алексеевич Умов
Эфир(вакуум)
Статьи, обновления
Продолжительность жизни, бессмертие, вечная жизнь.(0)
Кризис бытия.(0)
Сжатый свет.(0)
Форум, обновления
И, все-таки проверяю.
Гипоталамус продолжение
Гипоталамус
Сайт существует
Главная » Статьи » Ускорители » Коллайдер

Большой адронный коллайдер

«Большим» назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м, «адронным» — из-за того, что он ускоряет адроны, то есть тяжёлые частицы, состоящие из кварков; «коллайдером» (англ. collider — сталкиватель) — из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.

Детекторы и предускорители БАК
Траектория протонов p (и тяжёлых ионов свинца Pb) начинается в линейных ускорителях (в точках p и Pb, соответственно). Затем частицы попадают в бустер протонного синхротрона (PS), через него — в протонный суперсинхротрон (SPS) и, наконец, непосредственно в туннель БАК. Детекторы TOTEM и LHCf, отсутствующие на схеме, находятся рядом с детекторами CMS и ATLAS соответственно Google Street View в сентябре 2013 года получил возможность изображения коллайдера.

Карта с нанесённым на неё расположением Коллайдера
В конце 1990-х годов физикам удалось разработать Стандартную модель (СМ), которая объединяет три из четырёх фундаментальных взаимодействий — сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах ОТО. Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: ОТО и СМ. Их объединения пока достичь не удалось из-за трудностей создания теории квантовой гравитации.
Поиск Новой физики
Как сказано выше, СМ не может считаться окончательной теорией элементарных частиц. Она должна быть частью некоторой более глубокой теории строения микромира, той частью, которая видна в экспериментах на коллайдерах при энергиях ниже примерно 1 ТэВ. Такие теории коллективно называют «Новая физика» или «За пределами Стандартной модели». Главная задача Большого адронного коллайдера — получить хотя бы первые намеки на то, что это более глубокая теория. Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн, получившая своё развитие в М-теории (теории бран), теория супергравитации, петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц. БАК позволит провести эксперименты, которые ранее были невозможны и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» — например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий.
Изучение топ-кварков
Топ-кварк — самый тяжёлый кварк и, более того, это самая тяжёлая из открытых пока элементарных частиц. Согласно последним результатам Тэватрона, его масса составляет 173,1 ± 1,3 ГэВ/c². Из-за своей большой массы топ-кварк до сих пор наблюдался пока лишь на одном ускорителе — Тэватроне, на других ускорителях просто не хватало энергии для его рождения. Кроме того, топ-кварки интересуют физиков не только сами по себе, но и как «рабочий инструмент» для изучения бозона Хиггса. Один из наиболее важных каналов рождения бозона Хиггса в БАК — ассоциативное рождение вместе с топ-кварк-антикварковой парой. Для того, чтобы надёжно отделять такие события от фона, предварительно необходимо изучение свойств самих топ-кварков.
Изучение механизма электрослабой симметрии

Диаграммы Фейнмана, показывающие возможные варианты рождения W- и Z-бозонов, которые в совокупности образуют нейтральный бозон Хиггса Одной из основных целей проекта является экспериментальное доказательство существования бозона Хиггса — частицы, предсказанной шотландским физиком Питером Хиггсом в 1964 году в рамках Стандартной модели. Бозон Хиггса является квантом так называемого поля Хиггса, при прохождении через которое частицы испытывают сопротивление, представляемое нами как поправки к массе. Сам бозон нестабилен и имеет большу́ю массу (более 120 ГэВ/c²). На самом деле, физиков интересует не столько сам бозон Хиггса, сколько хиггсовский механизм нарушения симметрии электрослабого взаимодействия.
Изучение кварк-глюонной плазмы
Ожидается, что примерно один месяц в год будет проходить в ускорителе в режиме ядерных столкновений. В течение этого месяца коллайдер будет разгонять и сталкивать в детекторах не протоны, а ядра свинца. При неупругом столкновении двух ядер на ультрарелятивистских скоростях на короткое время образуется и затем распадается плотный и очень горячий комок ядерного вещества. Понимание происходящих при этом явлений (переход вещества в состояние кварк-глюонной плазмы и её остывание) нужно для построения более совершенной теории сильных взаимодействий, которая окажется полезной как для ядерной физики, так и для астрофизики.

Моделирование процесса рождения бозона Хиггса в детекторе CMS
Поиск суперсимметрии
Первым значительным научным достижением экспериментов на БАК может стать доказательство или опровержение «суперсимметрии» — теории, гласящей, что любая элементарная частица имеет гораздо более тяжёлого партнера, или «суперчастицу».
Изучение фотон-адронных и фотон-фотонных столкновений
Электромагнитное взаимодействие частиц описывается как обмен (в ряде случаев виртуальными) фотонами. Другими словами, фотоны являются переносчиками электромагнитного поля. Протоны электрически заряжены и окружены электростатическим полем, соответственно это поле можно рассматривать как облако виртуальных фотонов. Всякий протон, особенно релятивистский протон, включает в себя облако виртуальных частиц как составную часть. При столкновении протонов между собой взаимодействуют и виртуальные частицы, окружающие каждый из протонов. Математически процесс взаимодействия частиц описывается длинным рядом поправок, каждая из которых описывает взаимодействие посредством виртуальных частиц определённого типа (см.: диаграммы Фейнмана). Таким образом, при исследовании столкновения протонов косвенно изучается и взаимодействие вещества с фотонами высоких энергий, представляющее большой интерес для теоретической физики. Также рассматривается особый класс реакций — непосредственное взаимодействие двух фотонов, которые могут столкнуться как со встречным протоном, порождая типичные фотон-адронные столкновения, так и друг с другом. В режиме ядерных столкновений, из-за большого электрического заряда ядра, влияние электромагнитных процессов имеет ещё большее значение.
Проверка экзотических теорий
Теoретики в конце XX века выдвинули огромное число необычных идей относительно устройства мира, которые все вместе называются «экзотическими моделями». Сюда относятся теории с сильной гравитацией на масштабе энергий порядка 1 ТэВ, модели с большим количеством пространственных измерений, преонные модели, в которых кварки и лептоны сами состоят из частиц, модели с новыми типами взаимодействия. Дело в том, что накопленных экспериментальных данных оказывается всё ещё недостаточно для создания одной-единственной теории. А сами все эти теории совместимы с имеющимися экспериментальными данными. Поскольку в этих теориях можно сделать конкретные предсказания для БАК, экспериментаторы планируют проверять предсказания и искать следы тех или иных теорий в своих данных. Ожидается, что результаты, полученные на ускорителе, смогут ограничить фантазию теоретиков, закрыв некоторые из предложенных построений. Предлагается осуществлять поиск параллельных вселенных. По мнению учёных для этих целей необходимо создание в БАК мини-чёрных дыр. Планируется, после модернизации, увеличение возможности коллайдера работать с энергиями до 14 ТэВ.
Другое
Также ожидается обнаружение физических явлений вне рамок Стандартной Модели. Планируется исследование свойств W и Z-бозонов, ядерных взаимодействий при сверхвысоких энергиях, процессов рождения и распадов тяжёлых кварков (b и t).
Технические характеристики

Подземный зал, в котором смонтирован детектор ATLAS (октябрь 2004 года)

Детектор ATLAS в процессе сборки (февраль 2006 года)

Регистрация частиц, образовавшихся после столкновения в детекторе CMS
В ускорителе сталкиваются протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14•10^12 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5 ГэВ (5•10^9 электронвольт) на каждую пару сталкивающихся нуклонов. На начало 2010 года БАК уже несколько превзошел по энергии протонов предыдущего рекордсмена — протон-антипротонный коллайдер Тэватрон, который до конца 2011 года работал в Национальной ускорительной лаборатории им. Энрико Ферми (США). Несмотря на то, что наладка оборудования растягивается на годы и ещё не завершена, БАК уже стал самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии остальные коллайдеры, в том числе и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США). Светимость БАК во время первых недель работы пробега была не более 10^29 частиц/см²•с, тем не менее она продолжает постоянно повышаться. Целью является достижение номинальной светимости в 1,7•10^34 частиц/см²•с, что по порядку величины соответствует светимостям BaBar (SLAC, США) и Belle (KEK, Япония). Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер. Туннель с длиной окружности 26,7 км проложен под землёй на территории Франции и Швейцарии. Глубина залегания туннеля — от 50 до 175 метров, причём кольцо туннеля наклонено примерно на 1,4 % относительно поверхности земли. Для удержания, коррекции и фокусировки протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Магниты работают при температуре 1,9 K (−271 °C), что немного ниже температуры перехода гелия в сверхтекучее состояние. Российские учёные принимали активное участие как в строительстве самого БАК, так и в создании всех работающих на нём детекторов.
Детекторы
На БАК работают 4 основных и 3 вспомогательных детектора:
• ALICE (A Large Ion Collider Experiment)
• ATLAS (A Toroidal LHC ApparatuS)
• CMS (Compact Muon Solenoid)
• LHCb (The Large Hadron Collider beauty experiment)
• TOTEM (TOTal Elastic and diffractive cross section Measurement)
• LHCf (The Large Hadron Collider forward)
• MoEDAL (Monopole and Exotics Detector At the LHC).
ATLAS, CMS, ALICE, LHCb — большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf — вспомогательные, находятся на удалении в несколько десятков метров от точек пересечения пучков, занимаемых детекторами CMS и ATLAS соответственно, и будут использоваться попутно с основными.

Детектор CMS
Детекторы ATLAS и CMS — детекторы общего назначения, предназначены для поиска бозона Хиггса и «нестандартной физики», в частности тёмной материи, ALICE — для изучения кварк-глюонной плазмы в столкновениях тяжёлых ионов свинца, LHCb — для исследования физики b-кварков, что позволит лучше понять различия между материей и антиматерией, TOTEM — предназначен для изучения рассеяния частиц на малые углы, таких что происходит при близких пролётах без столкновений (так называемые несталкивающиеся частицы, forward particles), что позволяет точнее измерить размер протонов, а также контролировать светимость коллайдера, и, наконец, LHCf — для исследования космических лучей, моделируемых с помощью тех же несталкивающихся частиц.
С работой БАК связан также седьмой, совсем незначительный в плане бюджета и сложности, детектор (эксперимент) MoEDAL, предназначенный для поиска медленно движущихся тяжёлых частиц.

Во время работы коллайдера столкновения проводятся одновременно во всех четырёх точках пересечения пучков, независимо от типа ускоряемых частиц (протоны или ядра). При этом все детекторы одновременно набирают статистику.
Процесс ускорения частиц в коллайдере

Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших энергий достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. При этой энергии они уже движутся со скоростью близкой к световой. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем сгусток протонов направляют в главное 26,7-километровое кольцо, доводя энергию протонов до максимальных 7 ТэВ, и в точках столкновения детекторы фиксируют происходящие события. Два встречных пучка протонов при полном заполнении могут содержать 2808 сгустков каждый. На начальных этапах отладки процесса ускорения циркулируют лишь по одному сгустку в пучке длиной несколько сантиметров и небольшого поперечного размера. Затем начинают увеличивать количество сгустков. Сгустки располагаются в фиксированных позициях относительно друг друга, которые синхронно движутся вдоль кольца. Сгустки в определённой последовательности могут сталкиваться в четырёх точках кольца, где расположены детекторы частиц. Кинетическая энергия всех сгустков адронов в БАКе при полном его заполнении сравнима с кинетической энергией реактивного самолета, хотя масса всех частиц не превышает нанограмма и их даже нельзя увидеть невооружённым глазом. Такая энергия достигается за счёт скорости частиц, близкой к скорости света. Скорость протонов с энергией 7 ТэВ всего на 3 метра в секунду меньше, чем скорость света (c). Сгустки проходят полный круг ускорителя быстрее, чем за 0,0001 сек, совершая, таким образом, свыше 10 тыс. оборотов в секунду.
Потребление энергии
Во время работы коллайдера расчётное потребление энергии составит 180 МВт. Предположительные энергозатраты всего ЦЕРН на 2009 год с учётом работающего коллайдера — 1000 ГВт•ч, из которых 700 ГВт•ч придётся на долю ускорителя. Эти энергозатраты — около 10 % от суммарного годового энергопотребления кантона Женева. Сам ЦЕРН не производит энергию, имея лишь резервные дизельные генераторы.
Вопросы безопасности
Вопросы безопасности Большого адронного коллайдера
Значительная доля внимания со стороны представителей общественности и СМИ связана с обсуждением катастроф, которые могут произойти в связи с функционированием БАК. Наиболее часто обсуждается опасность возникновения микроскопических чёрных дыр с последующей цепной реакцией захвата окружающей материи, а также угроза возникновения страпелек, гипотетически способных преобразовать в страпельки всю материю Вселенной.
Строительство и эксплуатация

27-километровый подземный тоннель, предназначенный для размещения ускорителя БАК
История строительства
Строительство

Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера.
Руководитель проекта — Линдон Эванс.
• 19 ноября 2006 года закончено строительство специальной криогенной линии для охлаждения магнитов.
• 27 ноября 2006 года в туннеле был установлен последний сверхпроводящий магнит.
Испытания и эксплуатация 2008 год

Детектор ATLAS, ноябрь 2006 года
• 11 августа успешно завершена первая часть предварительных испытаний. Во время испытаний пучок заряженных частиц прошёл чуть более трёх километров по одному из колец БАК.
• 10 сентября был произведён официальный запуск коллайдера
Запущенные пучки протонов успешно прошли весь периметр коллайдера по и против часовой стрелки.
• 12 сентября команде БАК удалось запустить и непрерывно удерживать циркулирующий пучок. На этом задача по установлению циркулирующего пучка завершилась, и физики приступили к подробным тестам магнитной системы.
• 19 сентября в ходе тестов магнитной системы сектора 3-4 произошла авария, в результате которого БАК вышел из строя.
Один из электрических контактов между сверхпроводящими магнитами расплавился под действием возникшей из-за увеличения силы тока электрической дуги, которая пробила изоляцию гелиевой системы охлаждения (криогенной системы), что привело к деформации конструкций, загрязнению внутренней поверхности вакуумной трубы частичками металла, а также выбросу около 6 тонн жидкого гелия в туннель. Ремонт коллайдера занял остаток 2008 и бо́льшую часть 2009 года.
21 октября состоялась торжественная церемония официального открытия (инаугурация) БАК.
2009 год
• 20 ноября, впервые после аварии 19 сентября 2008 года, пучок протонов успешно прошёл по всему кольцу коллайдера.
• 29-30 ноября учёные довели энергию каждого из пучков протонов до значения 1180 ГэВ. Таким образом, БАК стал самым мощным ускорителем протонов в мире.
• 9 декабря состоялись столкновения пучков протонов на достигнутой в конце ноября рекордной энергии — 2,36 ТэВ (= 2 × 1180 ГэВ).
2010 год
• 30 марта энергия пучка протонов доведена до 3,5 ТэВ, состоялись столкновения протонов с суммарной энергией 7 ТэВ. Начался первый длительный сеанс научной работы БАК.
• 4 ноября закончились эксперименты в 2010 году в режиме протон-протонных столкновений. Коллайдер переведен в режим столкновения тяжёлых ионов (ионов свинца). Первые тестовые запуски ионных сгустков начались во второй половине дня.
• 7 ноября начались и продолжались один месяц столкновения ядер с полной энергией 5,74 ТэВ.
2011 год
• 22 апреля на БАК установлен мировой рекорд пиковой светимости для адронных коллайдеров — 4,67•10^32 см−2•сек−1. Предыдущий рекорд был установлен ускорителем Тэватрон в 2010 году, тогда светимость составила 4,02•10^32см−2•сек−1.
• 17 июня светимость, набранная ATLAS и CMS за 2010—2011 годы, превысила 1 фбн−1.
• 15 ноября начата трёхнедельная программа столкновений ионов свинца.
2012 год
• 16 марта протоны впервые разогнаны до энергии 4 ТэВ[39].
• В сентябре были проведены пробные протон-ионные столкновения.
• 17 декабря успешно завершён первый этап протонных столкновений.
2013 год
В начале 2013 года были проведены серии протон-ионных столкновений. 14 февраля 2013 года коллайдер был остановлен для модернизации до конца 2014 года.
2015 год
• В марте коллайдер будет перезапущен, учёные собираются сконцентрироваться на поисках частиц тёмной материи и суперсимметрии.
• 5 апреля ЦЕРН запустила Большой адронный коллайдер после двухлетнего перерыва.
Планы развития
На лето 2013 г. коллайдер остановлен на плановые технические работы. Планируется увеличить энергию столкновения протонов с нынешних 8 ТэВ до 13-14 ТэВ и установить дополнительное оборудование на детекторах ALICE, ATLAS, CMS, LHCb. В 2015 году эксперименты будут продолжены. После того, как БАК выйдет на проектную энергию и светимость, принято решение к 2020 году провести модернизацию каскада предварительных ускорителей, в первую очередь SPS, а также провести ряд других работ, что позволит заметно повысить светимость коллайдера (ранее проект назывался Super-LHC, сейчас проект называется HL-LHC). Также обсуждается возможность проведения столкновений протонов и электронов (проект LHeC). Для этого потребуется пристроить линию ускорения электронов. Обсуждаются два варианта: пристройка линейного ускорителя электронов и размещение кольцевого ускорителя в том же тоннеле, что и LHC. Ближайшим из реализованных аналогов LHeC является немецкий электрон-протонный коллайдер HERA. Отмечается, что в отличие от протон-протонных столкновений, рассеяние электрона на протоне — это очень «чистый» процесс, позволяющий изучать партонную структуру протона намного внимательнее и аккуратнее.
В планах на очень отдалённую перспективу обсуждается демонтаж большинства деталей БАК и использование освободившегося тоннеля и инфраструктуры для коллайдера нового поколения. Это могло бы повысить энергию на пучок протонов до 16 ТэВ. Считается что проект проработает до 2034, но уже в 2014 физики ЦЕРНа начали подготовку к реализации иных коллайдеров, их мощность будет в 10 раз больше.
Распределённые вычисления
LHC@home
Для управления, хранения и обработки данных, которые будут поступать с ускорителя БАК и детекторов, создаётся распределённая вычислительная сеть LCG (англ. LHC Computing GRID), использующая технологию грид. Для определённых вычислительных задач (расчет и корректировка параметров магнитов путем моделирования движения протонов в магнитном поле) задействован проект распределённых вычислений LHC@home. Также рассматривалась возможность использования проекта LHC@home для обработки полученных экспериментальных данных, однако основные сложности связаны с большим объёмом информации, необходимым для передачи на удаленные компьютеры (сотни гигабайт). В рамках проекта распределенных вычислений LHC@Home 2.0 (Test4Theory) производится моделирование столкновений пучков протонов с целью сопоставления полученных модельных и экспериментальных данных.
Научные результаты
Благодаря большей энергии по сравнению с предшествовавшими коллайдерами, БАК позволил «заглянуть» в недоступную ранее область энергий и получить научные результаты, накладывающие ограничения на ряд теоретических моделей.
Краткий перечень научных результатов, полученных на коллайдере:
• открыт Бозон Хиггса, его масса определена как 125,3 ± 0,6 ГэВ
• при энергиях до 8 ТэВ изучены основные статистические характеристики протонных столкновений — количество рождённых адронов, их распределение по быстроте, бозе-эйнштейновские корреляции мезонов, дальние угловые корреляции, вероятность остановки протона
• показано отсутствие асимметрии протонов и антипротонов
• обнаружены необычные корреляции протонов, вылетающих в существенно разных направлениях
• получены ограничения на возможные контактные взаимодействия кварков
• получены более веские, по сравнению с предыдущими экспериментами, признаки возникновения кварк-глюонной плазмы в ядерных столкновениях
• исследованы события рождения адронных струй
• подтверждено существование топ-кварка, ранее наблюдавшегося только на Тэватроне
• обнаружено два новых канала распада Bs-мезонов, получены оценки вероятностей сверхредких распадов B- и Bs-мезонов на мюон-антимюонные пары
• открыты новые, теоретически предсказанные частицы
• получены первые данные протон-ионных столкновений на рекордной энергии, обнаружены угловые корреляции, ранее наблюдавшиеся в протон-протонных столкновениях
; • объявлено о наблюдении частицы Y(4140), ранее наблюдавшейся лишь на Тэватроне в 2009 г.
Также, были предприняты попытки обнаружить следующие гипотетические объекты:
• лёгкие чёрные дыры
• возбуждённые кварки 
• суперсимметричные частицы 
• лептокварки
• неизвестные ранее взаимодействия и их частицы-переносчики (например, W'- и Z'-бозоны).
Несмотря на безуспешный итог поиска указанных объектов, были получены более строгие ограничения на минимально возможную массу каждого из них. По мере накопления статистики, ограничения на минимальную массу перечисленных объектов становятся жестче.
Прочие результаты
• Результаты работы эксперимента LHCf, работавшего в первые недели после запуска БАК, показали, что энергетическое распределение фотонов в области от нуля до 3,5 ТэВ плохо описывается программами, моделирующими данный процесс, приводя к расхождениям между реальными и модельными данными в 2-3 раза (для самой высокой энергии фотонов, от 3 до 3,5 ТэВ, все модели дают предсказания, почти на порядок превышающие реальные данные).
• 15 ноября 2012 коллаборацией CMS было объявлено о наблюдении частицы Y(4140) с массой 4148,2 ± 2.0 (стат) ± 4,6 (сист) МэВ/c2 (статистическая значимость более 5σ), ранее наблюдавшейся лишь на Тэватроне в 2009 г. Наблюдения сделаны в ходе обработки статистики 5,2 фб−1 столкновений протонов на энергии 7 ТэВ. Наблюдаемый распад данной частицы на J/ψ-мезон и Фи-мезон не описывается в рамках Стандартной модели.
Финансирование проекта
В 2001 году ожидалось, что общая стоимость проекта составит около 4,6 млрд швейцарских франков (3 млрд евро) за сам ускоритель (без детекторов) и 1,1 млрд швейцарских франков (700 млн евро) составит доля ЦЕРН в проведении экспериментов (то есть в строительстве и обслуживании детекторов). Строительство БАК было одобрено в 1995 году с бюджетом 2,6 млрд швейцарских франков (1,6 млрд евро) и дополнительными 210 млн швейцарских франков (140 млн евро) на эксперименты. В 2001 году эти расходы были увеличены на 480 млн франков (300 млн евро) в части ускорителя и 50 млн франков (30 млн евро) в части экспериментов (расходы, относящиеся непосредственно к ЦЕРН), что вследствие сокращения бюджета ЦЕРН привело к сдвигу планируемых сроков введения с 2005 года на апрель 2007 года.
Бюджет проекта по состоянию на ноябрь 2009 года составил 6 млрд долл. — столько было инвестировано в строительство установки, которое продолжалось семь лет. Ускоритель частиц создавался под руководством ЦЕРН. В проекте задействовано 700 специалистов из России. Общая стоимость заказов, которые получили российские предприятия, по некоторым оценкам достигает 120 млн долл.
Официальная стоимость проекта БАК не включает стоимость ранее существовавших в ЦЕРН инфраструктуры и наработок. Так, основное оборудование БАК смонтировано в тоннеле ранее существовавшего коллайдера LEP, при этом использовалось многокилометровое кольцо SPS в качестве предварительного ускорителя. Если бы БАК пришлось строить с нуля, его стоимость оказалась бы заметно выше.
Категория: Коллайдер | Добавил: Никс (09.04.2015)
Просмотров: 1387 | Комментарии: 4 | Рейтинг: 2.0/1
Всего комментариев: 4
0
4   [Материал]
Страпелька
Материал из Википедии — свободной энциклопедии
Стра́пелька («странная капелька»), странгле́т (от англ. strangelet — strange + droplet) — гипотетический объект, состоящий из «странной материи», либо образованной адронами, содержащими «странные» кварки, либо не разделённым на отдельные адроны кварковым веществом с примерно одинаковым содержанием странных, верхних и нижних кварков. Странная материя рассматривается в космологии как кандидат на роль «тёмной материи». Русскоязычный вариант термина страпелька предложен в 2005 году Сергеем Поповым] как калька от англ. strangelet; вариант странглет (приблизительная фонетическая адаптация того же английского слова) существовал и ранее, его употребляют в русскоязычных физических статьях. Английский термин предложен в 1984 году E. Farhi и R. Jaffe.
Элементарные частицы, состоящие из «верхних», «нижних» и странных кварков, например, гипероны, и даже более сложные структуры, аналогичные атомным ядрам, обильно производятся в лабораторных условиях, но распадаются за время порядка 10^−9 с. Это обусловлено гораздо большей массой странного кварка по сравнению с верхним и нижним. Вместе с тем существует гипотеза, что достаточно большие «странные ядра», состоящие из примерно равного количества верхних, нижних и странных кварков, могут быть стабильнее. Дело в том, что кварки относятся к фермионам, а принцип Паули запрещает двум одинаковым фермионам находиться в одном и том же квантовом состоянии, вынуждая частицы, «не успевшие» занять низкоэнергетичные состояния, размещаться на более высоких энергетических уровнях. Поэтому если в ядре имеется три разных сорта («аромата») кварков, а не два, как в обычных ядрах, то большее количество кварков может находиться в низкоэнергетических состояниях, не нарушая принципа Паули. Такие гипотетические ядра, состоящие из трёх сортов кварков, и называют страпельками (странглетами).
Предполагается, что страпельки, в отличие от обычных атомных ядер, могут оказаться устойчивыми по отношению к спонтанному делению даже при больши́х массах. Если это верно, то странглеты могут достигать макроскопических и даже астрономических размеров и масс.
Предполагается также, что столкновение страпельки с ядром какого-нибудь атома может вызывать его превращение в странную материю, которое сопровождается выделением энергии. В результате во все стороны разлетаются новые страпельки, что теоретически может приводить к цепной реакции.
Высказываются опасения, что данный процесс каталитического превращения обычной материи в «странную» может привести к превращению в странную всей материи, из которой состоит наша планета (подробнее: Вопросы безопасности Большого адронного коллайдера#Страпельки).
Поиск стабильных страпелек в образцах лунного грунта завершился отрицательно. Таким образом, если стабильные страпельки и существуют, то их массовая доля в обычной материи составляет менее 10^−16.

0
3   [Материал]
Вимп
Материал из Википедии — свободной энциклопедии
Вимп (от англ. WIMP, Weakly Interacting Massive Particle) — гипотетическая слабовзаимодействующая массивная частица. Хотя устоявшегося термина для этого понятия в русскоязычной литературе нет, слово «вимп» широко используется в разговорной речи специалистов. Вимпы являются кандидатами на роль основного компонента холодной тёмной материи, которая даёт около четверти вклада в общую плотность Вселенной (наблюдаемая барионная плотность в 6 раз меньше). Предполагается, что из четырёх фундаментальных взаимодействий вимпы участвуют только в слабом и гравитационном. Поэтому реликтовые (родившиеся вскоре после Большого Взрыва) вимпы очень трудно обнаружить экспериментально. Масса вимпов должна быть как минимум в несколько десятков раз больше массы протона. Среди возможных кандидатов на роль вимпов чаще всего рассматриваются легчайшие суперсимметричные частицы (нейтралино), которые в большинстве теорий суперсимметрии являются стабильными.

0
2   [Материал]
Барн
Материал из Википедии — свободной энциклопедии
Барн (русское обозначение: б, бн; международное: b) — внесистемная единица измерения площади, используется в ядерной физике для измерения эффективного сечения ядерных реакций, а также квадрупольного момента. 1 барн численно равен 10−28 м² = 10−24 см² = 100 фм² (примерный размер атомного ядра). Определяются также кратные и дольные единицы; из них используются:
• мегабарн (Мбн, Мб, 10−18 см²),
• килобарн (кбн, кб, 10−21 см²),
• миллибарн (мбн, мб, 10−27 см²),
• микробарн (мкбн, мкб, 10−30 см²),
• нанобарн (нбн, нб, 10−33 см²),
• пикобарн (пбн, пб, 10−36 см²),
• фемтобарн (фбн, фб, 10−39 см²),
• аттобарн (абн, аб, 10−42 см²),
Электрический квадрупольный момент имеет размерность произведения площади на электрический заряд, однако в атомной и ядерной физике заряд часто выражают в единицах элементарного заряда, поэтому квадрупольный момент приобретает размерность площади и в этом случае тоже может измеряться в барнах.
Международная организация законодательной метрологии (МОЗМ) относит барн к единицам измерения, «которые могут временно применяться до даты, установленной национальными предписаниями, но которые не должны вводиться, если они не используются», и разрешает использовать барн только в атомной и ядерной физике.
Производные единицы
Обратные барны (бн−1), а также кратные и дольные единицы используются в качестве меры интегральной светимости коллайдеров (то есть количества частиц, прошедших за время работы машины через единицу площади поперечного сечения пучка в зоне соударения встречных пучков, что пропорционально количеству произошедших реакций). Так, интегральная светимость в 10 фбн−1 означает, что за время работы через каждый квадратный фемтобарн зоны соударения прошло в среднем 10 частиц. Если известно эффективное поперечное сечение какой-либо реакции, то для того, чтобы узнать количество произошедших реакций, надо умножить это сечение (в барнах) на интегральную светимость (в обратных барнах). Светимость коллайдеров выражается через обратные барны в секунду; например, максимальная проектная (ещё не достигнутая) светимость Большого адронного коллайдера составляет 1,7•10^34 см−2с−1, что соответствует 1,7•10−5 фбн−1с−1. За 10^5 секунд работы (чуть больше суток) БАК в таком режиме будет набирать интегральную светимость 1,7 обратных фемтобарн (или 1700 обратных пикобарн — следует отметить, что, как и для любых обратных единиц, соотношения между десятичными приставками «переворачиваются»: обратный барн в 1000 раз меньше обратного миллибарна).

0
1   [Материал]
Светимость
Материал из Википедии — свободной энциклопедии
Светимость — термин, используемый для именования некоторых физических величин.
Светимость ускорителя
В экспериментальной физике элементарных частиц светимостью называют параметр ускорителя, характеризующий интенсивность столкновения частиц пучка с частицами фиксированной мишени (интенсивность столкновения частиц двух встречных пучков в случае коллайдеров). Светимость L измеряется в см−2•с−1. При умножении сечения реакции на светимость получается средняя частота протекания этого процесса на данном коллайдере .
Светимость Большого адронного коллайдера во время первых недель работы пробега была не более 10^29 частиц/см²•с, тем не менее она продолжает постоянно повышаться. Целью является достижение номинальной светимости в 1,7•10^34 частиц/см²•с, что по порядку величины соответствует светимостям BaBar (SLAC, США) и Belle (KEK, Япония).

Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа

Поиск
Апитерапия.
Как пчел водить.
Copyright MyCorp © 2024
Бесплатный конструктор сайтов - uCozЯндекс.Метрика