Выход

Профиль пользователя
Главная страница
Все на свете познается
 
Меню сайта
Основы мироздания
Идеи меняющие Мир
Озарение.
Идейка, с линейку.
Собственное пространство.
Поле тяготения.
Движение в поле тяготения.
Терминология
Инвариантность
Инвариантная константа
Относительность движения
Принцип эквивалентности
Система координат
Система отсчёта.
Собственное пространство.
Мироздание.
Вакуум = эфир.
Истинный вакуум.
Ложный вакуум.
Энергия Мироздания.
Пространственная сингулярность.
Антивещество
Система единиц Планка
Световые часы
Наше пространство
Пространство антимира
Интервал, СТО.
Комплексное пространство.
Трехмерный комплексный вектор.
Световой конус.
Поле тяготения.
Равновесная траектория.
Метрическое пространство.
Пространство времени.
Читать,думать..+comment

Форум, обновления
  • Вращательное движение.
  • Терминология
  • Психофизическая телепортация
  • Новости сайта
    Коммент к новостям
    Блог.
    Блог, обновление
    Идейка то, с линейку!(1)
    Скорость времени.(3)
    Я многое ещё не знаю!(2)
    Коммент к блогу
    Статьи
    Статьи обновление
  • Принцип относительности.(1)
  • Разъяснения парадоксов ТО.(0)
  • Заглянем вечности в лицо?(2)
  • Коммент к статьям
    Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0


  • Сегодня посетили Никс


  • Сайт существует
    Главная » Статьи » Вакуум » Физический вакуум

    Виды вакуумов
    Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей.
    В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий).
    Вырождение вакуума при спонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов. Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов. Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира[5] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва.
    Ложный вакуум

    Скалярное поле φ в состоянии ложного вакуума. Энергия E выше, чем в состоянии истинного вакуума (основное состояние), но потенциальный барьер препятствует переходу поля. Таким образом, переход возможен лишь при высокой энергии поля или путём квантовомеханического туннелирования
    Ложный вакуум — состояние в квантовой теории поля, которое не является состоянием с глобально минимальной энергией, а соответствует её локальному минимуму. Такое состояние стабильно в течение определённого времени (метастабильно), но может «туннелировать» в состояние истинного вакуума.
    Эйнштейновский вакуум.
    Эйнштейновский вакуум — иногда встречающееся название для решений уравнений Эйнштейна в общей теории относительности для пустого, без материи, пространства-времени. Синоним — пространство Эйнштейна. Уравнения Эйнштейна связывают метрику пространства-времени (метрический тензор gμν) с тензором энергии-импульса. В общем виде они записываются как
    где тензор Эйнштейна Gμν является определённой функцией метрического тензора и его частных производных, R — скалярная кривизна, Λ — космологическая постоянная, Tμν — тензор энергии-импульса материи, π — число пи, c — скорость света в вакууме, G — гравитационная постоянная Ньютона. Вакуумные решения этих уравнений получаются при отсутствии материи, то есть при тождественном равенстве нулю тензора энергии-импульса в рассматриваемой области пространства-времени: Tμν = 0. Часто лямбда-член также принимается равным нулю, особенно при исследовании локальных (некосмологических) решений. Однако при рассмотрении вакуумных решений с ненулевым лямбда-членом (лямбда-вакуум) возникают такие важные космологические модели, как модель де Ситтера (Λ > 0) и модель анти-де Ситтера (Λ < 0). Тривиальным вакуумным решением уравнений Эйнштейна является плоское пространство Минковского, то есть метрика, рассматриваемая в специальной теории относительности. Другие вакуумные решения уравнений Эйнштейна включают в себя, в частности, следующие случаи:
    • Космологическая модель Милна (частный случай метрики Фридмана с нулевой плотностью энергии)
    • Метрика Шварцшильда, описывающая геометрию вокруг сферически симметричной массы
    • Метрика Керра, описывающая геометрию вокруг вращающейся массы
    • Плоская гравитационная волна (и другие волновые решения) Космическое пространство

    Космическое пространство является не идеальным вакуумом, разреженная плазма заполнена заряженными частицами, электромагнитными полями, а иногда звёздами. Космическое пространство имеет очень низкую плотность и давление, и является ближайшим приближением физического вакуума. Но космический вакуум не является действительно совершенным, даже в межзвёздном пространстве есть несколько атомов водорода на кубический сантиметр. Звёзды, планеты и спутники держат свои атмосферы силой притяжения, и как таковой у атмосферы нет чётко очерченной границы: плотность атмосферного газа просто уменьшается с расстоянием от объекта. Атмосферное давление Земли падает до примерно 3,2×10−2 Па на 100 км (62 мили) высоты — на так называемой линии Кармана, которая является общим определением границы с космическим пространством. За этой линией изотропное давление газа быстро становится незначительным по сравнению с давлением излучения от Солнца и динамическим давлением солнечного ветра, поэтому определение давления становится трудно интерпретировать. Термосфера в этом диапазоне имеет большие градиенты давления, температуры и состава, и сильно варьируется в связи с космической погодой. Плотность атмосферы в течение первых нескольких сотен километров выше линии Кармана всё ещё достаточна для оказания значительного сопротивления движению искусственных спутников Земли. Большинство спутников работают в этой области, называемой низкой околоземной орбитой, и должны подрабатывать двигателями каждые несколько дней для поддержания стабильной орбиты. Космическое пространство заполнено большим количеством фотонов, так называемым реликтовым излучением, а также большим количеством реликтовых нейтрино, пока не поддающихся обнаружению. Текущая температура этих излучений составляет около 3 К, или −270 °C или −454° по Фаренгейту.
    Категория: Физический вакуум | Добавил: Никс (17.12.2014)
    Просмотров: 767 | Рейтинг: 0.0/0
    Всего комментариев: 0
    Добавлять комментарии могут только зарегистрированные пользователи.
    [ Регистрация | Вход ]
    Форма входа

    Поиск
    Новости астрофизики
    Пчеловодство для народа
    Copyright MyCorp © 2018
    Бесплатный конструктор сайтов - uCozЯндекс.Метрика