Никс | Дата: Воскресенье, 19.01.2014, 19.20 | Сообщение # 1 |
Админ
Группа: Администраторы
Сообщений: 497
Репутация: 10
Статус: Offline
| Тема на редакции
Тело человека состоит из клеток, соединяющих их тканей и систем: все это в целом представляет собой единую сверхсистему организма. Миллиарды клеточных элементов не смогли бы работать как единое целое, если бы в организме не существовал сложный механизм регуляции. Особую роль в регуляции играет нервная система и система эндокринных желез. Но в сложном механизме регуляции есть несколько уровней, первым из которых является клеточный.
В каждой клетке тела заключена генетическая информация, достаточная для того, чтобы был воспроизведен весь организм. Эта информация записана в структуре дезоксирибонуклеиновой кислоты (ДНК) и заключена в генах, расположенных в ядре. Клетка имеет свои внутриклеточные регуляторы, причем их структура одинакова и у микробов, и в клетках высших организмов. Одна группа этих регуляторов построена из продуктов обмена глюкозы (циклически нуклеотиды), главным образом представителем которых является циклический аденозимонофосфат (или цАМФ); вторая – из продуктов обмена жирных кислот (простагландины). Так, из энергетических субстратов создается система регуляции для использование этих субстратов. Оболочка клетки - мембрана играет большую роль она является своего рода антенной или рецептаром, настроенным на восприятие одних сигналов и нечувствительных к другим. В соответствие с сигналами, поступающими с рецептаров мембраны, клетка меняет свою активность, скорость процесса деления и т.д. Так благодаря мембране клетка отвечает только на нужный ей сигнал или согласовывает первый уровень регуляции - внутриклеточный – с требованиями, предъявляемыми клетке организмом.
Второй уровень регуляции – надклеточный – создается гормонами. Гормоны – специальные вещества, вырабатывающиеся главным образом в эндокринных железах; поступают через кровь, они оказывают влияние на деятельность чувствительных к ним клеток. Такая регуляция постоянства внутренней среды организма, происходящая по принципу отрицательной обратной связи, очень эффективна для поддержания гомеостаза, однако не может выполнять все задачи адаптации организма. Например, кора надпочечников продуцирует стероидные гормоны в ответ на голод, болезнь, эмоциональное возбуждение и т. п. Чтобы эндокринная система могла «отвечать» на свет, звуки, запахи, эмоции и т. д., должна существовать связь между эндокринными железами и нервной системой. Основные связи между нервной и эндокринной системами регуляции осуществляются посредством взаимодействия гипоталамуса и гипофиза Пример механизма гормональной регуляции: Функциональная активность эндокринной железы может регулироваться «субстратом», на который направлено действие гормона. Так, глюкоза стимулирует секрецию инсулина из β-клеток панкреатических островков (островки Лангерганса), а инсулин понижает концентрацию глюкозы в крови, активируя ее транспорт в мышцы и печень. Это происходит следующим образом. Глюкоза входит в β-клетки поджелудочной железы через переносчик глюкозы и сразу же фосфорилируется глюкокиназой, после чего вовлекается в гликолиз. Образующийся при этом АТФ ингибирует калиевые каналы, вследствие чего снижается мембранный потенциал β-клеток и активируются потенциалзависимые кальциевые каналы. Входящий в β-клетку кальций стимулирует слияние везикул, содержащих инсулин, с плазматической мембраной и секрецию инсулина. Инсулин активирует перенос глюкозы в печень, сердце и скелетные мышцы, вследствие чего уровень глюкозы в крови снижается, замедляется ее вход в β-клетки и уменьшается секреция инсулина. Такой же механизм лежит в основе секреции паратгормона (паратиреоидный гормон, паратирин) и кальцитонина. Оба гормона влияют на концентрацию кальция и фосфатов в крови. Паратиреоидный гормон вызывает выход минеральных веществ из кости и стимулирует реабсорбцию кальция в почках и кишечнике, в результате чего возрастает концентрация кальция в плазме крови. Кальцитонин, напротив, стимулирует поступление кальция и фосфатов в костную ткань, в результате чего концентрация минеральных веществ в крови снижается. При высокой концентрации кальция в крови подавляется секреция паратиреоидного гормона и стимулируется секреция кальцитонина. В случае снижения концентрации кальция в крови секреция паратиреоидного гормона усиливается, а кальцитонина — ослабляется. Если вспомнить, что первичная жизнь зародилась в водной среде, то не может не восхитить, что состав и концентрация солей (ионов), омывающих клетку, практически точно соответствует солевой воде мирового океана в докембрийскрой периоде, когда в процессе эволюции создавалась структура современной клетки. В течение миллионов лет состав клетки остается постоянным, несмотря на столь сложные их преобразования в специализированные ткани и органы входе дальнейшей эволюции живой природы. Даже механизм смерти как бы обходит стороной определенные показатели внутренней среды (например, концентрацию кальция и фосфора в крови), одинаков важные и для одиночной клетки и Мирового океана, и для нервной клетки головного мозга человека. Эти свойства охраняются вероятно, столь стойко ради сохранения самой жизни. Неслучайно высокоспециализированных живых системах, включая человека, функционирует особая эндокринная железа обедняющая деятельность ряда эндокринных желез – пульт управления и координации. У человека – гипофиз расположенный, в хорошо защищенной косными образованьями «турецком седле». Каждой периферической эндокринной железе соответствует в гипофизе специальный гормон – регулятор. Это создает ряд отдельных систем, между которыми осуществляется взаимодействие.
Расположение гипоталамуса и гипофиза
Гипофиз представляет, таким образом, третий уровень регуляции у высших организмов. Но гипофиз может получать сигналы, оповещающие о том, что происходит в теле, но он не имеет прямой связи с внешней средой. Между тем для того, чтобы факторы внешней среды постоянно не нарушали жизнедеятельность организма, должно осуществляется приспособление тела к меняющимся внешним условиям. О внешних воздействиях организм узнает через органы чувств, которые передают полученную информацию в центральную нервную систему. В организме существуют устройство – регулятор, передающий данную информацию непосредственно в рабочие органы и соответствующие клетки разных тканей – гипоталамус. Гипоталамус выполняет множество функций. Во-первых, связь нервной системой, так как гипоталамус это типичная нервная ткань состоящая из нейронов, связанная со всеми отделами нервной системы. Во-вторых, гипоталамус регулирует гипофиз, так как является эндокринной железой. Нервные импульсы, приходящие в гипоталамус, активируют секрецию так называемых рилизинг-факторов (либеринов и статинов): тиреолиберина, соматолиберина, пролактолиберина, гонадолиберина и кортиколиберина, а также соматостатина и пролактостатина. Мишенью для либеринов и статинов, секретируемых гипоталамусом, является гипофиз. Каждый из либеринов взаимодействует с определенной популяцией клеток гипофиза и вызывает в них синтез соответствующих тропинов: тиреотропина, соматотропного гормона (соматотропин — гормон роста), пролактина, гонадотропного гормона, (гонадотропины — лютеинизирующий и фолликулостимулирующий), а также адренокортикотропного гормона (АКТГ, кортикотропин). Статины оказывают на гипофиз влияние, противоположное действию либеринов, — подавляют секрецию тропинов. Тропины, секретируемые гипофизом, поступают в общий кровоток и, попадая на соответствующие железы, активируют в них секреторные процессы. Молекула соматолиберина является самой крупной среди либеринов, она состоит из 15 аминокислотных остатков; самая маленькая молекула — трипептид — у тиреолиберина. Молекулы тропинов, образующихся в гипофизе, содержат от 13 до 198 аминокислотных остатков. Регуляция деятельности гипофиза и гипоталамуса, кроме сигналов, идущих «сверху вниз», осуществляется гормонами «исполнительных» желез. Эти «обратные» сигналы поступают в гипоталамус и затем передаются в гипофиз, что приводит к изменению секреции соответствующих тропинов. После удаления или атрофии эндокринной железы стимулируется секреция соответствующего тропного гормона; при гиперфункции железы секреция соответствующего тропина подавляется. Обратные связи не только позволяют регулировать концентрацию гормонов в крови, но и участвуют в дифференцировке гипоталамуса в онтогенезе. Образование половых гормонов в женском организме происходит циклически, что объясняется циклической секрецией гонадотропных гормонов. Синтез этих гормонов контролируется гипоталамусом, образующим рилизинг-фактор этих тропинов (гонадолиберин). Если самке пересадить гипофиз самца, то пересаженный гипофиз начинает функционировать циклично. Половая дифференцировка гипоталамуса происходит под действием андрогенов. Если самца лишить половых желез, продуцирующих андрогены, то гипоталамус будет дифференцироваться по женскому типу. В железах внутренней секреции иннервированы, как правило, только сосуды, а эндокринные клетки изменяют свою биосинтетическую и секреторную активность лишь под действием метаболитов, кофакторов и гормонов, причем не только гипофизарных. Так, ангиотензин II стимулирует синтез и секрецию альдостерона. Отметим также, что некоторые гормоны гипоталамуса и гипофиза могут образовываться не только в этих тканях. Например, соматостатин (гормон гипоталамуса, ингибирующий образование и секрецию гормона роста) обнаружен также в поджелудочной железе, где он подавляет секрецию инсулина и глюкагона. Большинство нервных и гуморальных путей регуляции сходится на уровне гипоталамуса и благодаря этому в организме образуется единая нейроэндокринная регуляторная система. К клеткам гипоталамуса подходят аксоны нейронов, расположенных в коре больших полушарий и подкорковых образованиях. Эти аксоны секретируют различные нейромедиаторы, оказывающие на секреторную активность гипоталамуса как активирующее, так и тормозное влияние. Поступающие из мозга нервные импульсы гипоталамус «превращает» в эндокринные стимулы, которые могут быть усилены или ослаблены в зависимости от гуморальных сигналов, поступающих в гипоталамус от желез и тканей, подчиненных ему. Тропины, образующиеся в гипофизе, не только регулируют деятельность подчиненных желез, но и выполняют самостоятельные эндокринные функции. Например, пролактин оказывает лактогенное действие, а также тормозит процессы дифференцировки клеток, повышает чувствительность половых желез к гонадотропинам, стимулирует родительский инстинкт. Кортикотропин является не только стимулятором стероцдогенеза, но и активатором липолиза в жировой ткани, а также важнейшим участником процесса превращения в мозге кратковременной памяти в долговременную. Гормон роста может стимулировать активность иммунной системы, обмен липидов, Сахаров и т. д. В задней доле гипофиза (нейрогипофиз) депонируются антидиуретический гормон (вазопрессин) и окситоцин. Первый вызывает задержку воды в организме и повышает тонус сосудов, второй стимулирует сокращение матки при родах и секрецию молока. Оба гормона синтезируются в гипоталамусе, затем транспортируются по аксонам в заднюю долю гипофиза, где депонируются и потом секретируются в кровь. Таким образом, с помощью гипоталамуса осуществляется взаимосвязь между внешним миром и внутренней средой. Благодаря своему необычному устройству гипоталамус преобразовывает быстродействующие сигналы из нервной системы, в медленнотекущие, специализированные реакции эндокринной системы.
Гипоталамус – четвертый уровень регуляции в организме.
Пятый уровень регуляции – центральная нервная система, включающая и кору головного мозга. Наконец, особая эндокринная железа, также находящаяся в мозге - эпофиз – оказывает регулирующие влияние на гипоталамус, в частности изменяет его чувствительность к действию гормонов. И все же именно гипоталамус, а не другие отделы нервной системы является центральным регулятором внутренней среды организма. Чем обусловлено такое значение гипоталамуса? В первую очередь тем, что гипоталамус – главный регулятор вегетативных (протекающих подсознательно) функций. Нервная система может вмешаться в течение автоматического осуществления некоторых функций, если возникнет необходимость приспособить деятельность организма к требованиям, предъявляемым внешней средой, но не контролирует эту деятельность без необходимости. Поэтому гипоталамус во многом функционирует автоматически, без надзора со стороны центральной нервной системы, повинуясь собственному ритму и сигналам, поступающим из тела. Гипоталамус регулирует также функции, как репродукция, рост тела (гормон роста), деятельность щитовидной железы (тиреотропный гормон), коры надпочечников (кортикотроин), функцию молочной железы (лактогенный гормон, или гормон, стимулирующий секцию молока). В гипоталамусе и прилегающих к нему отделах мозга – находится центр сна, а также центр, контролирующий эмоции. В гипоталамусе находятся центры аппетита, и центр теплопродукции и теплорегуляции. В гипоталамусе имеются структуры, связанные с регуляцией удовольствия или наслаждения. Многие из этих центров функционируют взаимосвязано, например, отделы гипоталамуса, контролирующие аппетит, эмоции и энергетический обмен. В гипоталамусе имеются специальные структуры, или центры, с которыми связанна регуляция сердечной деятельности , тонуса сосудов , иммунитета , водного и солевого балансов, функции желудочно-кишечного тракта, мочеотделения и т.д. Более того, в гипоталамусе есть отделы, имеющие прямое отношение к вегетативной нервной системе в целом. Вегетативная нервная система регулирует деятельность внутренних органов, а именно, контролирует повторяющиеся, автоматические процессы в теле. Сама вегетативная система состоит из 2 частей – симпатической и парасимпатической, которые оказывают на ткани и органы противоположные влияния. По существу, нет ни одной функции в сложной интеграции организма, которая не требовала бы участия гипоталамуса. Но в целом все его функции можно разделить на 2 группы. Во-первых, гипоталамус приспосабливает деятельность организмов к условиям среды, защищает организм от повреждающих влияний внешней среды, т. е. Противодействует факторам, могущим привести к смерти организма. Во-вторых, гипоталамус – это высший орган постоянства внутренней среды. Вместе с регулируемыми органами гипоталамус работает как своеобразная замкнутая система, обеспечивая постоянство внутренней среды в соответствии с информацией, получаемой из внутреннего мира организма. Гипоталамус тщательно контролирует постоянные, регулярные процессы, которые должны протекать циклически, независимо от внешнего мира. Но он также приспосабливает организм к давлению окружающей среды. Более того, гипоталамические и гипофизарные процессы влияют на состояние не только тела, но и мозга и, можно сказать, на состояние духа. Те же самые гормоны, которые контролируют секрецию молока (лактогенный гормон), коры надпочечников (кортикотропин) и мобилизацию жира (липотропин), подвергаются в мозге биологическим превращениям. В результате от этих гормонов отсоединяются более простые по строению вещества, которые воздействуют на процесс запоминания и обучения, эмоциональную окраску событий, восприятие боли – т.е. на выработку мозгом многих решений. Таким образом, как бы материализуется пословица: “В здоровом теле – здоровый дух”. Системы гипоталамуса, которые поддерживают постоянство внутренней среды, строго регулируются в соответствии с механизмами отрицательной связи. Они обеспечивают выполнение закона постоянства внутренней среды организма. Стабильность не следует понимать как нечто неподвижное застывшее. Само поддержание стабильности может быть связано с активной работой каждой системы в отдельности и всего организма в целом, а это означает, что стабильность – это усредненные колебания каждого явления, т.е. динамическое равновесие, достигаемое при правильной деятельности гомеостатических систем. Вместе с тем если стабильность – это необходимое условие существования организма, то любое стойкое нарушение следует определять как болезнь. Любое стойкое нарушение гомеостаза является болезнью, ибо болезнью закономерно обозначают любой патофизиологический процесс, увеличивающий вероятность смерти. biofile
|
|
| |