Выход

Профиль пользователя
Главная страница
Все на свете познается
 
Меню сайта
Основы мироздания
Идеи меняющие Мир
Озарение.
Идейка, с линейку.
Собственное пространство.
Поле тяготения.
Движение в поле тяготения.
Терминология
Инвариантность
Инвариантная константа
Относительность движения
Принцип эквивалентности
Система координат
Система отсчёта.
Собственное пространство.
Мироздание.
Вакуум = эфир.
Истинный вакуум.
Ложный вакуум.
Энергия Мироздания.
Пространственная сингулярность.
Антивещество
Система единиц Планка
Световые часы
Наше пространство
Пространство антимира
Интервал, СТО.
Комплексное пространство.
Трехмерный комплексный вектор.
Световой конус.
Поле тяготения.
Равновесная траектория.
Метрическое пространство.
Пространство времени.
Читать,думать..+comment

Форум, обновления
  • Терминология
  • Психофизическая телепортация
  • Гипноз
  • Новости сайта
    Коммент к новостям
    Блог.
    Блог, обновление
    Идейка то, с линейку!(1)
    Скорость времени.(3)
    Я многое ещё не знаю!(2)
    Коммент к блогу
    Статьи
    Статьи обновление
  • Принцип относительности.(1)
  • Разъяснения парадоксов ТО.(0)
  • Заглянем вечности в лицо?(2)
  • Коммент к статьям
    Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0


  • Сегодня посетили


  • Сайт существует
    Главная » Статьи » Математика » Комплексные числа

    Комплексное число
    Первоначально идея о необходимости расширения понятия действительного числа возникла в результате формального решения квадратных и кубических уравнений, в которых в формулах для корней уравнения под знаком корня стояло отрицательное число. В дальнейшем возникшая теория функций комплексного переменного нашла применение для решения многих задач во всех областях математики и физики.
    История
    Впервые, по-видимому, мнимые величины были упомянуты в известном труде «Великое искусство, или об алгебраических правилах» Кардано (1545), в рамках формального решения задачи по вычислению двух чисел, которые в сумме дают 10, а при перемножении дают 40. Он получил для этой задачи квадратное уравнение для одного из слагаемых, и нашёл его корни: и . В комментарии к решению он написал: «эти сложнейшие величины бесполезны, хотя и весьма хитроумны» и «Арифметические соображения становятся все более неуловимыми, достигая предела столь же утонченного, сколь и бесполезного». Возможность использования мнимых величин при решении кубического уравнения, в так называемом неприводимом случае (когда вещественные корни многочлена выражаются через кубические корни из мнимых величин), впервые описал Бомбелли (1572). Он же впервые описал правила сложения, вычитания, умножения и деления комплексных чисел, однако всё равно считал их бесполезной и хитроумной «выдумкой». Выражения, представимые в виде , появляющиеся при решении квадратных и кубических уравнений, стали называть «мнимыми» в XVI—XVII веках с подачи Декарта, который называл их так, отвергая их реальность, и для многих других крупных ученых XVII века природа и право на существование мнимых величин представлялись весьма сомнительными, так же как сомнительными в то время считали и иррациональные числа, и даже отрицательные величины. Лейбниц, например, писал: «Дух божий нашёл тончайшую отдушину в этом чуде анализа, уроде из мира идей, двойственной сущности, находящейся между бытием и небытием, которую мы называем мнимым корнем из отрицательной единицы». Несмотря на это, математики смело применяли формальные методы алгебры вещественных величин и к комплексным, получали корректные вещественные результаты даже из промежуточных комплексных, и это не могло не начать внушать доверие. Долгое время было неясно, все ли операции над комплексными числами приводят к комплексным или вещественным результатам, или, например, извлечение корня может привести к открытию ещё какого-то нового типа чисел. Задача о выражении корней степени из данного числа была решена в работах Муавра (1707) и Котса (1722). Символ для обозначения мнимой единицы предложил Эйлер (1777, опубл. 1794), взявший для этого первую букву слова лат. imaginarius — мнимый. Он же распространил все стандартные функции, включая логарифм, на комплексную область. Эйлер также высказал в 1751 году мысль об алгебраической замкнутости поля комплексных чисел. К такому же выводу пришёл д’Аламбер (1747), но первое строгое доказательство этого факта принадлежит Гауссу (1799). Гаусс и ввёл в широкое употребление термин «комплексное число» в 1831 году, хотя этот термин ранее использовал в том же смысле французский математик Лазар Карно в 1803 году. Арифметическая (стандартная) модель комплексных чисел как пар вещественных чисел была построена Гамильтоном (1837); это доказало непротиворечивость их свойств. 
    Существенно ранее, в 1685 году в работе «Алгебра» Валлис (Англия) показал, что комплексные корни квадратного уравнения с вещественными коэффициентами можно представить геометрически, точками на плоскости. Но это прошло незамеченным. Следующий раз геометрическое истолкование комплексных чисел и действий над ними появилось в работе Весселя (1799). Современное геометрическое представление, иногда называемое «диаграммой Аргана», вошло в обиход после опубликования в 1806-м и 1814-м годах работы Ж. Р. Аргана, повторявшей независимо выводы Весселя. Термины «модуль», «аргумент» и «сопряжённое число» ввёл Коши. Таким образом было обнаружено, что комплексные числа пригодны и для выполнения чисто алгебраических операций сложения, вычитания, умножения и деления векторов на плоскости, что сильно изменило векторную алгебру. В развитие этого подхода начались поиски способа аналогично представить и вектора в трёхмерном пространстве. В результате пятнадцатилетних поисков, в 1843 году Гамильтон предложил обобщение комплексных чисел — кватернионы, которые он был вынужден сделать не трёхмерными, а четырёхмерными; также ему пришлось отказаться от коммутативности операции умножения. Позднее, в 1919 году, стало понятно, что и комплексные числа из вещественных, и кватернионы из комплексных чисел могут быть получены единой процедурой удвоения размерности, так же известной как Процедура Кэли — Диксона. Дальнейшим применением этой процедуры образуются числа, описанные Артуром Кэли в 1845 году, до обнаружения этой процедуры, и названные «Числа Кэли» (октонионы, октавы). Числа, получаемые следующим применением процедуры названы Седенионы. Несмотря на то, что эту процедуру можно повторять и далее, дальнейшие числа названий пока не имеют.
    Весь математический материал статьи
    Категория: Комплексные числа | Добавил: Никс (14.05.2015)
    Просмотров: 248 | Рейтинг: 1.0/1
    Всего комментариев: 0
    Добавлять комментарии могут только зарегистрированные пользователи.
    [ Регистрация | Вход ]
    Форма входа

    Поиск
    Новости астрофизики
    Пчеловодство для народа
    Copyright MyCorp © 2018
    Бесплатный конструктор сайтов - uCozЯндекс.Метрика