Выход

Профиль пользователя
Главная страница
Все на свете познается
 
Меню сайта
Основы мироздания
Читать,думать..+comment

Форум, обновления
  • Скорость времени.
  • Антимир возможен?
  • Терминология
  • Новости сайта
    Коммент к новостям
    Блог.
    Блог, обновление
    Скорость времени.(3)
    Я многое ещё не знаю!(2)
    Кукушка кукует.(1)
    Коммент к блогу
    Статьи
    Статьи обновление
  • Разъяснения парадоксов ТО.(0)
  • Заглянем вечности в лицо?(2)
  • Единый эталон: время - длина - частота.(0)
  • Коммент к статьям
    Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0


  • Сегодня посетили Никс


  • Сайт существует
    Главная » Статьи » Магнитное поле. » Магнит за три тысячелетия. (В. Карцев)

    Пирамиды ядерного века
    Пирамиды ядерного века
    Еще Демокрит был уверен, что, разрезая яблоко пополам, половинки — еще пополам, четвертинки — снова пополам и так далее, можно дойти до мельчайших "атомов" материи. Древнегреческий философ был прав; на 90-м раздвоении перед ним "лежало бы" два атома. Но где взять "нож" для столь тонких разрезов? Сегодня нужные инструменты есть, к их созданию причастны великий Лоуренс и не менее великий Векслер, трудами которых вошли в практику ускорители элементарных частиц. Существование последних без магнитов немыслимо. О людях эпохи, об уровне развития ее науки и искусства мы судим прежде всего по сохранившимся памятникам. Египетские пирамиды, римские акведуки, русские иконы, флорентийские фрески, пещеры Аджанты, средневековые европейские соборы, более близкие к нам по времени плотины и телескопы являются уникальными символами ушедших эпох, подчас точнее воссоздающими те времена, чем пухлые тома хроник. А среди памятников, которые оставит после себя наш беспокойный век, быть может, наиболее яркими будут заброшенные к тому времени гигантские ускорители, которые, как нельзя лучше, характеризуют ядерный век: состояние его науки, техники, искусства, его материальные возможности и даже отношения между людьми и народами. Ускорители — это пирамиды нашего века…
    Люди, причастные к этим творениям, окружены заботой и вниманием; на них смотрит с восхищением весь мир; они находятся на самом переднем крае человеческих знанийнеутомимому любопытству физиков, вырос до исполинских, невероятных прежде размеров. До Лоуренса, вместе с Лоуренсом и после него было много талантливых ученых, которые были бы вправе разделить с ним честь открытия. Так, можно было бы упомянуть харьковских физиков, испытавших на два года раньше Лоуренса устройство, напоминавшее циклотрон. Можно упомянуть и многих других. Но спросите любого физика: "Кто изобрел циклотрон?" И он ответит без колебаний: "Лоуренс". Человек, который бы вдруг оказался на захламленной территории Калифорнийского университета в 1932 г., мог заметить небольшое, буквально разваливающееся на глазах здание, размещавшееся на пути в учебные химические лаборатории. Из здания доносился натужный вой генераторов, сыпались искры, тлели огоньки в ртутных выпрямителях. Все вокруг было залито светом мощных ламп. Суетились какие-то люди. Здесь создавался циклотрон. Руководил работами Лоуренс. Жизнь Эрнеста Лоуренса напоминает жизнь "типичного" счастливчика. Да, у Лоуренса были все основания считаться счастливым. Как и большинство известных физиков своего времени, он учился в нескольких университетах: Миннесотском, Чикагском и Йельском. Еще раньше, в школе, его интерес к физике был поддержан учителем Эйкли. В Йельском университете Лоуренс получил степень доктора философии (примерно соответствует степени кандидата физико-математических наук) за его исключительные способности к экспериментированию. Так, во время обучения в Йельском университете еще в 1925 г. он предложил принципы осуществления цветного телевидения, а позже самостоятельно построил такой телевизор (В 1965 г. японскими фирмами был выпущен в продажу цветной транзисторный телевизор, работающий по принципу, предложенному Лоуренсом.), предложил способ измерения отрезков времени порядка одной миллионной доли секунды и т. д. Особый интерес Лоуренса вызывало в то время ускорение ионов. Как это сделать? В книге одного из наиболее известных создателей уникальных советских ускорителей Е.Г.Комара "Ускорители заряженных частиц" сопоставляются различные методы ускорения вещества. Действительно, что значит ускорить частицу, придать ей энергию? Это значит увеличить ее скорость. Бросая камень, вы ускоряете заряженные частицы, входящие в атомы камня. Ускорить частицы можно и другим способом, например, выстреливая ими из ружья. Рассмотрим этот случай. Пусть пуля массой 100 г летит со скоростью 1 км/с. Какова кинетическая энергия пули? Она может быть рассчитана по известной формуле: E = mv2/2 = 100 ·1010/2 эрг = 3,13·10^17МэВ. Казалось бы, стрельба — идеальный метод для ускорения частиц, поскольку с небольшими затратами мы получили огромную энергию. Однако все обстоит не так просто. Эта колоссальная энергия распределяется между частицами, и энергия каждой частицы в отдельности, определяющая интенсивность ядерных превращений, будет, конечно, ничтожной. Так, на каждый протон такой системы приходится всего 0,005 эВ энергии, чего, естественно, совершенно недостаточно. А что, если увеличить скорость пули? Скорость стоит в формуле для энергии в квадрате и сильно влияет на степень ускорения. Расчеты, однако, показывают, что увеличение скорости даже до космической также не приводит к достижению достаточной энергии элементарных частиц. Может быть, использовать для ускорения частиц идею, положенную в основу работы всех электродвигателей? Пусть у нас будет очень длинный электромагнит — порядка нескольких километров с полем в зазоре около 2 Тл. Если теперь в зазоре этого электромагнита разместить проводник с током, то проводник начнет двигаться. К концу своего движения он может приобрести значительную энергию, если, конечно, не расплавится (чем большее хотим получить ускорение, тем большую плотность тока в проводнике мы должны обеспечить). Это расплавление происходит в обычных проводниках уже при скорости 107 см/с, его явно недостаточно для ускорения при высоких энергиях. Наиболее эффективным методом ускорения заряженных частиц оказывается их ускорение в электрическом поле. Под влиянием разности потенциалов 1 млн В частица приобретает энергию 1МэВ. Однажды, занимаясь в библиотеке, Лоуренс прочитал статью немецкого автора о двух вакуумированных трубках, между которыми было электрическое поле. Заряженная частица, перескакивая из трубки в трубку, значительно увеличивала свою энергию. "А почему бы, — подумал Лоуренс, — не соединить подряд четыре, десять, сто трубок? Тогда мы могли бы в соответствующее число раз увеличить и энергию частицы, может быть, довести ее до такой, которая будет достаточной, чтобы разбить атом?.. Наверное, это возможно… Но тогда установка будет очень длинной, может быть, несколько километров в длину… А что, если свернуть эти трубки в спираль? Тогда их можно будет разместить на небольшом пространстве… Но частицы движутся прямолинейно… Как заставить их бежать по спирали? Частицы движутся прямолинейно не всегда: попав в магнитное поле, частицы начинают двигаться по кругу… Значит, нужно применить магнитное поле — разместить эту спираль из трубок между полюсами магнита…" Так Лоуренс открыл принцип действия циклотрона. Это открытие оказало сильнейшее влияние не только на жизнь самого Лоуренса, но и на дальнейшее развитие ядерной физики. Однако идея — это еще не все. И хотя две небольшие модели, построенные Лоуренсом, свидетельствовали о правильности нового принципа, нужно было довести этот принцип до возможности его практического использования. В течение пяти лет Лоуренс вместе со своими студентами работает над проблемами обеспечения сверхвысокого вакуума, создания мощных высокочастотных генераторов, подбора магнита. Нужно было спешить. Ускорители того времени уже давали протоны с энергией до 0,8 МэВ. Согласно работам Эрнеста Резерфорда и некоторым выводам квантовой механики, протоны с энергией около 1 МэВ должны расщеплять атомы. Честь первым расщепить атом была настолько заманчивой, что за нее с колоссальным энтузиазмом соревновались несколько всемирно известных лабораторий. Под руководством Резерфорда работали Кокрофт и Уолтон в Кембридже, самые "опасные" для Лоуренса соперники. Манера исследования Резерфорда заключалась в максимальной простоте, изяществе и чистоте опытов. На горе Дженеросо в Швейцарии европейские физики Браш, Ланж и Урбан для ускорения протонов попытались использовать молнию, что дало бы им сразу весьма значительный перевес, поскольку разность потенциалов, которую можно было получить с помощью молнии, очень велика и частицы были бы ускорены молнией до 15 МэВ и выше. Исследователи натянули между соседними скалами металлическую сетку. Во время грозы на этой сетке скапливался значительный положительный заряд. Однажды ученым удалось получить искусственную молнию длиной около 5 м. Это означало, что достигнута энергия 10 МэВ. Однако такое достижение обошлось очень дорого: в результате несчастного случая погиб доктор Урбан… Тем не менее соревнование продолжалось. И Лоуренс надеялся быть первым. Он всегда улыбался. Он не признавал никаких препятствий: ни финансовых, ни научных, ни технических. Он игнорировал трудности экспериментального и, что гораздо опасней, теоретического характера. Небольшое деревянное здание, в котором производились первые эксперименты Лоуренса, дало начало грандиозной радиационной лаборатории в Беркли, раскинувшейся на берегу моря на живописных холмах Сан-Франциско, где впоследствии был установлен гигантский фазотрон, на котором сделано одно из волнующих открытий нашего времени — открыт антипротон. "Антимир начинается в Беркли", — с гордостью говорили берклийцы следующих поколений. Но когда Лоуренс приступал к строительству первого циклотрона, у него были только идея, тысяча долларов и уверенность в том, что он все может, уверенность, не такая уж необоснованная, для "счастливчика". Первое, с чего нужно было начать, — сделать магнит. Однако такой традиционный подход потребовал бы слишком много времени, и поэтому Лоуренс купил громадный восьмидесятитонный магнит, залежавшийся на складе и ранее предназначавшийся для не выкупленного заказчиком радиопередатчика; Лоуренсу удалось приобрести его буквально за гроши. Отсутствие радиодеталей восполнялось за счет собственных старых радиоприемников, "заимствования" бесхозных приемников и радиодеталей, а то и просто в результате посещения ближайших свалок. Механические детали физики делали сами или заказывали на небольших заводах. Вакуумная камера первого циклотрона представляла собой сплющенную в пламени горелки лабораторную, колбу. Помогали Лоуренсу в основном студенты. Это, естественно, не было их основным занятием, а потому все было направлено на то, чтобы изготовить циклотрон как можно быстрей. Очень часто работы велись ночью, и перерыв делался лишь в четыре часа утра, когда уставшие студенты и их руководитель шли перекусить в ближайший ночной ресторан "Белая таверна". Все в лаборатории делалось только бегом. Лоуренс был полон энергии и оптимизма, он не замечал мелких неполадок и ошибок и акцентировал внимание только на успехах. Казалось, что его высокую и плотную фигуру можно было видеть сразу в нескольких местах. Его звали "маэстро" за виртуозность в экспериментах и абсолютно точные и уверенные советы, которые он давал сотрудникам. В то же время Лоуренс стремился, чтобы каждый работал творчески и разделял радость открытия, которое, однако, впоследствии будет приписано только ему одному, великому "маэстро". В 1932 г. первый в мире циклотрон был построен. Он давал пучок протонов с энергией 1,2 МэВ, т. е. намного превосходящей ту, при которой атомы могли быть расщеплены. Но Лоуренс опоздал… Кокрофт и Уолтон, ученики Резерфорда, использовав принципиально другой метод исследования и получив пучок с энергией всего лишь 0,7 МэВ, уже добились в Кавендишской лаборатории искусственного расщепления атома… Это было для Лоуренса жестоким, но полезным уроком. Он решает теперь направить свои усилия на совершенствование циклотрона и увеличение энергии частиц, получаемых с его помощью, прекрасно понимая, что увеличение энергии частиц даст возможность заняться вопросами взаимодействия частиц, открывающими путь к познанию законов атома. Открытие сделано, теперь необходимо добиваться систематических и достоверных результатов. Вот что по этому поводу говорил Джозеф Томсон, который, по выражению П.Л.Капицы, "из всех физиков конца прошлого и начала этого века сделал самые фундаментальные открытия (открыл электрон и изотопы), в своей книге "Воспоминания и раздумья". "…Обычно не первый шаг в открытии нового физического явления стоит больших денег. Так, открытие Рентгеном Х-лучей, или Кюри радия, или продолжительные опыты Ч.Т.Вильсона над образованием капелек на частицах, заряженных электричеством, — все они стоили ничтожные суммы. Открытия, подобные этим, обязаны тому, что не может быть куплено, — именно остроте и силе наблюдательности, интуиции, непоколебимому энтузиазму до окончательного разрешения всех затруднений и противоречий, сопутствующих пионерской работе. Когда первоначальное открытие сделано, наблюдаемый эффект очень мал и требует целого ряда длительных опытов для получения достоверных результатов. Вот это стремление добиться большого эффекта и стоит дорого. Это может означать затрату многих тысяч фунтов стерлингов для постройки сильных магнитов, или же для получения электродвижущих сил во много сот тысяч вольт, или же для приобретения больших запасов радия. Но все эти деньги хорошо израсходованы, так как они дают нам возможность добиваться новых знаний гораздо быстрее и с большей достоверностью". Академик П.Л.Капица сделал по этому поводу такое сравнение: "Когда Колумб отправился в экспедицию, результатом которой было открытие Америки, он ехал на простом маленьком фрегате, на лодчонке, с современной точки зрения. Но чтобы освоить Америку как страну, потребовалось построить большие корабли, как "Лузитания", "Титаник", и это полностью себя оправдало". Если первый циклотрон Лоуренса стоил 1 тыс. дол., то синхротрон на 6 тыс. МэВ — 3 млн. дол., а синхротрон Брукхейвенской лаборатории на 30 тыс. МэВ — уже 34 млн. дол. Если при постройке первого циклотрона у Лоренса было всего несколько помощников-студентов, то впоследствии в радиационной лаборатории штат возрос до нескольких тысяч человек. Сам Лоуренс в свои 38 лет стал одним из признанных великих физиков. Один из его друзей в день получения Лоуренсом Нобелевской премии шутливо телеграфировал ему: "Дорогой Эрнест, ты подаешь некоторые надежды в смысле карьеры…" Вот уже поистине, анекдоты, как сказал Вольтер, есть колоски, остающиеся на поле истории, когда урожай собран. Какие же задачи призваны решать столь большие коллективы на этих громадных магнитах, перевозимых в нескольких железнодорожных составах и располагающихся в подземных галереях? Член-корреспондент АН СССР Д.И.Блохинцев говорил, что в развитии физики XX века можно выделить три этапа: изучение атома, изучение атомного ядра и, наконец, изучение структуры элементарных частиц. Наряду с продолжением второго и первого этапов сейчас ведутся интенсивные исследования на третьем этапе. Ускорители имеют в этом смысле двоякое значение. Во-первых, при взаимодействии ускоренных частиц с ядрами других элементов возникают новые частицы, еще не известные науке. Во-вторых, ускоренные частицы, согласно представлениям квантовой механики, можно трактовать как волны определенной длины, причем длина волны тем меньше, чем больше энергия ускоренной частицы. Из физики также известно: с помощью любых волн можно "видеть" лишь те предметы, линейные размеры которых больше длины волны. В противном случае волна "не заметит" препятствия. Поэтому для исследования структуры мелких объектов микромира необходимо иметь волны с возможно меньшей длиной, т. е. максимально ускоренные частицы. Для решения задач, связанных с исследованиями структуры пространства (не обладает ли пространство квантовыми свойствами?) на расстоянии 10–15 см и меньше, а также структуры времени (может быть и время течет не непрерывно, а некоторыми порциями?) в промежутках, равных 10–25 с и менее, необходимы ускорители частиц на энергию 1 млн. МэВ (почти в 1 млн. раз больше энергии, полученной Лоуренсом в 1932 г.). С помощью новых мощных ускорителей ученые надеются разрешить многие вопросы. Почему природа избрала именно водород элементом, из которого синтезированы все остальные? Почему материя устойчива? Почему электрический заряд электрона точно равен противоположному по знаку заряду протона? Почему этот заряд равен именно 1,6·10–19 Кл? Почему протон тяжелее электрона именно в 1846 раз? Не могут ли оказаться гравитационные, электромагнитные, ядерные и слабые взаимодействия лишь различными аспектами единой физической реальности? Существует ли "пятая сила", кроме перечисленных? Есть ли в природе монополи — частицы, имеющие только один магнитный полюс и эквивалентные электрическим зарядам? Наконец, можно ли обнаружить "бесы" — кварки, из которых, быть может, состоят все "элементарные" частицы? Не может ли время течь в обратную сторону? Все эти вопросы касаются самых глубин нашего миропонимания. Профессор Роберт Оппенгеймер, в свое время глава американского атомного проекта, не исключал, что в процессе экспериментов на таких грандиозных ускорителях могут быть сделаны просто потрясающие открытия. Кто сказал, например, что причина всегда предшествует следствию? "Неизвестно, будет ли иметь смысл традиционное причинное описание событий, т. е. описание, при котором будущее зависит от прошлого непрерывно прослеживаемым образом. В хорошо изученных областях энергии не замечено ничего, что делало бы такие представления о пространстве, времени и причинности неправильными. Высокий уровень энергии запланированных ускорителей поможет разрешить эти вопросы". Упоенные успехами, Лоуренс и его помощники сразу же после запуска первого циклотрона заложили новую гигантскую машину — "циклотрон-мамонт", "циклотрон- гигант", "циклотрон-монстр". На постройку его были выделены колоссальные средства. Сотни людей участвовали в строительстве. И вот циклотрон-колосс построен. Мерцающие полированные плоскости его гигантских многометровых магнитов уже готовы к тому, чтобы между ними начал вращаться рой атомных частиц, ускоренных до гигантской по тем временам энергии — 60 млн. эВ. Но что произошло? Почему проектировщики торопливо проходят мимо еще не пущенного гиганта, стараясь не глядеть на него? Почему все разговоры о махине, сожравшей миллионы, встречают холодное молчание? При уточнении расчетов выяснилось, что вся эта масса металла бесполезна — лоуренсовский циклотрон в силу присущих ему особенностей и в соответствии с неумолимой теорией относительности в принципе не может давать частицы энергией выше 25…30 МэВ. Масса любой частицы возрастает при приближении скорости частицы к скорости света. Но частица с большей массой менее подвижна — она начинает отставать от частиц с меньшей энергией и запаздывает к ускоряющему промежутку, т. е. попадает к нему в тот момент, когда ускоряющее электрическое поле мало или направлено навстречу частице и тормозит ее. Все попытки вырваться из этого порочного круга были тщетны. Ненужный многотонный магнит несостоявшегося рекордного циклотрона пылился в лаборатории уже более четырех лет, когда появились статьи Векслера, где впервые была высказана идея "автофазировки", с помощью которой можно теоретически безгранично повышать энергию частиц, получаемых в ускорителях. Может быть, только физики в состоянии оценить эстетическую сторону этого нового принципа. Частицы сами по себе, повинуясь влиянию электрического поля изменяющейся частоты, приходят к ускоряющему промежутку как раз в тот момент, когда это необходимо — ни на мгновение раньше, ни на мгновение позже. Те самые исторические три статьи, подписанные до того неизвестным именем — В.И.Векслер — появились в 1944 г. в журнале "Доклады Академии наук СССР". Эти статьи открыли новую эпоху в создании ускорителей. "Нельзя ли использовать это "вредное" для циклотрона нарастание массы частиц при увеличении их скорости в наших целях? — так писал Векслер. — Иными словами, нельзя ли создать такие условия, при которых период обращения частиц, по крайней мере в среднем за много оборотов, автоматически поддерживался бы всегда равным периоду ускоряющего переменного поля именно за счет возрастания энергии частиц? Если бы нам удалось осуществить это требование, то очевидно, что важный для ускорения резонанс мог бы сохраняться сколь угодно долго, т. е. можно было бы ускорять частицы до сколь угодно больших энергий". Идея Векслера сводилась к тому, чтобы при росте массы частиц повышалось и магнитное поле, что уменьшало бы радиусы их орбит: "При каждом прохождении через щель частицы испытывают разное приращение массы (и соответственно разное приращение радиуса, по которому их заворачивает магнитное поле) в зависимости от напряжения поля между дуантами в момент ускорения данной частицы. Оказывается, что среди всех частиц имеются такие выделенные "удачливые" частицы (они обычно называются равновесными). Для этих равновесных частиц механизм, автоматически поддерживающий постоянство периода обращения, особенно прост. "Удачливые" частицы при каждом прохождении через щель дуантов испытывают приращение массы и увеличение радиуса окружности. Оно точно компенсирует уменьшение радиуса, вызванное приращением магнитного поля за время одного оборота. Следовательно, "удачливые" (равновесные) частицы могут резонансно ускоряться до тех пор, пока происходит возрастание магнитного поля". Удивительна, почти неправдоподобна судьба академика В.И.Векслера. Семи лет, в начале первой мировой войны, остался он без отца, погибшего на фронте, и в 1921 г. во время голода на Житомирщине, страшной разрухи, навсегда бросил свой сиротский дом и один, без денег оказался в Москве. Он становится беспризорником. Ночует, греясь у асфальтовых чанов, на Хитровом рынке. Во время одной из облав его забирает милиция и направляет в детский дом имени Коминтерна, в дом-коммуну, устроенную в старинном, покинутом хозяевами особняке в Хамовниках. В том доме поселились 25 бывших беспризорных. Жизнь их была строго регламентирована: ранний подъем, кухонные работы, уборка, завтрак, школьные занятия, обед. Вечером в коммуне работали всевозможные кружки. После ужина в точно обусловленное время — сон. В доме-коммуне царили свои законы. По всем вопросам жизни решение принимали на общем собрании, и оно не подлежало обсуждению, критике и обжалованию. Здесь, в коммуне, Владимир Векслер необычайно увлекся физикой и однажды поразил своих друзей тем, что сам построил детекторный радиоприемник. Он оказался прирожденным общественником, всегда был впереди, не пропускал ни одного культурного мероприятия, ни одного посещения театра; он — активный участник антирелигиозной пропаганды, всевозможных коллективных выходов, работ на общественных огородах. Владимир довольно прилично окончил школу и в 1925 г. был отправлен Хамовническим райкомом комсомола Москвы электромонтером на фабрику имени Свердлова. Там он проработал более двух лет и, разумеется, отлично проявил себя как с производственной, так и с общественной стороны. Завод дал ему комсомольскую путевку в институт. В то время шла кампания по совершенствованию вузовской работы, полная всяческих перемен и реформ, частых изменений программ и профилей обучения. Так и получилось, что В.И.Векслер, поступив на очное отделение Плехановского института народного хозяйства, окончил в конце концов экстерном в 1931 г. Московский энергетический институт, получив диплом инженера- электротехника. Его узкой специальностью стало рентгеновское оборудование. К этому времени он работал во Всесоюзном электротехническом институте, в лаборатории рентгеноструктурного анализа, где разрабатывал методы измерения ионизирующего излучения, собственными руками изготовляя нужные установки. Один из его учеников вспоминал впоследствии: "Почти 20 лет он сам собирал, монтировал различные придуманные им установки, никогда не чураясь любой работы. Это позволило ему ясно видеть не только фасад современной физики, не только ее идейную сторону, но и все, что скрывается за окончательными результатами, за точностью измерений. Весьма характерно, хотя это и не единственный в истории науки пример, что один из крупнейших современных физиков по образованию инженер. Правда, к В.И.Векслеру не следует подходить с обычной меркой. Формальный образовательный ценз для него очень мало значил. Он всю жизнь учился и переучивался. И до самых последних лет жизни, вечерами, в отпуске, он тщательно изучал и конспектировал теоретические работы. Многократные длительные поездки из Дубны в Москву он также использовал для бесед на научные темы и учебу. В 1936 г. в жизни Векслера произошло важное событие. Им заинтересовались молодые сотрудники Физического института Академии наук (ФИАН) И.М.Франк, П.А.Черенков, Л.В.Грошев. И вот И.М.Франк предложил ему сделать доклад на семинаре, потом Векслера пригласили к С.И.Вавилову, последовало обучение в докторантуре ФИАН. Поначалу Векслер занялся космическими лучами, потом пришлось заняться лоуренсовским циклотроном. Построить циклотрон, подобный лоуренсовскому, оказалось делом нелегким. Хотя уже в середине 30-х годов циклотрон с диаметром полюсных наконечников примерно в метр, как у Лоуренса, был создан в Ленинграде, только к 40-му году, благодаря кипучей энергии И.В.Курчатова и его коллег, удалось запустить в работу первую в Европе "атомную дробилку", как тогда называли циклотрон. Вавилов понимал, что глубокие исследования в области ядерной физики невозможны без постройки мощного ускорителя. Уже в то время он предложил создать самый крупный в мире ускоритель, диаметр полюсных наконечников которого должен был составить несколько метров. Многим и через тридцать лет такое смелое решение казалось невероятным. Но оно было принято и начало воплощаться в жизнь. Была укомплектована циклотронная бригада. В нее вошли В.И.Векслер, С.Н.Вернов, Л.В.Грошев, П.А.Черенков и Е.Л.Фейнберг. Тут же П.А.Черенков и С.Н.Вернов стали изготавливать модель будущего циклотрона. Подобрали магнит, еще небольшой, с диаметром полюсов около тридцати сантиметров, тщательно обработали полюсы. Продолжению этих работ помешала война". Вновь эта идея возникла в 1943 г., когда для осуществления советской атомной программы потребовалось создать мощный ускоритель, настолько мощный, что принцип циклотрона Лоуренса уже не годился. Полностью идея нового ускорителя созрела у Векслера на рубеже 1944 г. Уже в начале 1944 г. С.И.Вавилов собрал в своем директорском кабинете экстренное заседание Ученого совета. Там Векслер сделал свое сообщение. Обсуждение было бурным. Предложение Векслера казалось фантастическим, нереализуемым. Но — физически неуязвимым… "Сотрудников В.И.Векслера, — вспоминает профессор М.С.Рабинович, — всегда поражала его не столько потрясающая работоспособность, сколько не знающая удержу фантазия. Беседуя со своими учениками, он часто говорил: "У меня есть некоторая идея, которую я хотел бы обсудить". Начинался жаркий спор. Идея подвергалась ожесточенной критике. Температура дискуссии быстро поднималась. Все присутствующие изо всех сил старались опровергнуть новое предложение. Спор продолжался и в следующие дни. Иногда, чтобы разобраться, требовалась большая теоретическая работа. После такой работы спор продолжался. На возражения следовали контрвозражения. Для нас — учеников В.И.Векслера — такой метод разработки различных физических идей явился превосходной школой. Она много давала, но одновременно и много требовала. Не каждый мог выдержать такую работу в течение многих лет, но можно назвать многих ученых, которые прошли подобную школу идей у В.И.Векслера. Многие из его учеников сами в настоящее время стали руководителями больших коллективов научных сотрудников". Больше всего В.И.Векслер любил работать с молодежью, особенно с молодыми теоретиками. И это понятно. При бурной творческой работе у В.И.Векслера возникало много идей, иногда были и неправильные, но большей частью весьма интересные и настолько на первый взгляд необычные, фантастические, что они вызывали у многих физиков, привыкших к традиционному, медленному, "солидному" движению по дороге науки, возражения, порой даже насмешку и нежелание спорить по существу. К сожалению, некоторые, даже очень хорошие физики настороженно встретили его самую блестящую идею — принцип автофазировки, который привел к принципиально новым методам создания ускорителей заряженных частиц. Поэтому В.И.Векслеру было проще с молодежью, которая только вырабатывала свой стиль работы. Идея автофазировки понравилась Л.Н.Мандельштамму, статьи В.И.Векслера были молниеносно переведены на английский язык (несколько позже аналогичное предложение выдвинул американец Э.М.Макмиллан). Наконец-то Лоуренс смог возобновить работы на заброшенном циклотроне, и уже через несколько месяцев на нем были получены частицы с энергией 500 (!) МэВ. Но это был уже не циклотрон, а совершенно новая машина — синхроциклотрон. Однако, прежде чем перейти к описанию этой новой машины, обратимся к некоторым физическим явлениям, лежащим в основе процесса ускорения заряженных частиц. Лоуренс первым использовал магнитное ноле для возвращения частиц к одним и тем же ускоряющим промежуткам. Известно, что любая заряженная частица, двигаясь в магнитном поле, будет двигаться по окружности. В двух точках такой окружности Лоуренс расположил ускоряющие промежутки. Вот для этого Лоуренсу и понадобился старый магнит, завалявшийся на складе Калифорнийского университета. С ростом энергии частиц, получаемых в ускорителе, увеличивается радиус орбит, по которым вращаются частицы, а вместе с ним и диаметр магнитов. Поэтому-то самые большие магниты в мире — это магниты ускорителей. Заряженная частица подвержена в циклотроне влиянию двух сил: центробежной, которая стремится "выбросить" частицу из циклотрона, и центростремительной лоренцевой силы, которая заставляет частицу двигаться по окружности. Если в какой-то точке орбиты напряженность, скажем, резко падает до нуля, частица в этой точке, не сдерживаемая лоренцевой центростремительной силой, выскочит из циклотрона. Исходя из этих соображений, напряженность поля по орбите циклотрона устанавливают строго постоянной. Равенство центробежной и центростремительной сил на равновесной орбите обеспечивает так называемую горизонтальную устойчивость частицы. Что это значит? Предположим, что частица под влиянием каких-либо сил перешла с равновесной орбиты на орбиту большего радиуса. В этом случае лоренцева центростремительная сила будет больше центробежной, и в результате частица начнет смещаться в сторону орбиты меньшего радиуса до тех пор, пока не достигнет равновесной орбиты. При уменьшении радиуса орбиты частицы наблюдается обратная картина. А что случится, если частица перейдет на более низкую или более высокую орбиту? Если полюсные наконечники магнита параллельны друг другу и магнитные силовые линии, которые должны быть перпендикулярны к стальным поверхностям, представляют собой параллельные прямые, то при смещении орбиты вверх или вниз частица не "заметит" каких-либо изменений в магнитном поле. Все орбиты — средняя, более низкая и более высокая — будут для частицы равноценными, что приведет в конце концов вследствие неидеальности изготовления поверхностей полюсов к тому, что частицы "потеряются" в полюсах магнита. Чтобы этого не произошло или, как говорят, для обеспечения "вертикальной устойчивости" или "вертикальной фокусировки" движения частицы, полюсы магнитов скашивают так, чтобы зазор к краю полюса становился больше. В действительности, однако, скашивают не сами полюсы, а магнитные крышки вакуумной камеры, в которой происходит ускорение. В этом случае поле магнита ускорителя изменится: если непосредственно под центром полюса силовые линии по-прежнему будут прямыми, перпендикулярными плоскостям полюсов, то на внешнем крае полюса силовые линии будут выгибаться наружу, образуя так называемое бочкообразное выпучивание силовых линий. Бочкообразное магнитное поле характерно тем, что на его "экваториальном обруче" поле минимально, а с продвижением вверх или вниз оно увеличивается. Частица, движущаяся в таком поле, не может "упасть" на полюс магнита, так как в этом случае ей пришлось бы перейти из области со слабым полем в область с сильным полем, т. е. затратить некоторую энергию. Сам полюс имеет коническую форму, поскольку по высоте полюса от него отпочковываются магнитные силовые линии потока рассеяния. Таким образом, чем дальше идти вдоль полюса от рабочей зоны, тем больший магнитный поток по нему проходит. Что было бы, если бы полюс был цилиндрическим, а его сечение постоянным по высоте? В этом случае индукция в полюсе, в его части, близкой к рабочей зоне (B = Ф/S, где Ф — магнитный поток; S — сечение пути магнитного потока), была бы очень низкой, а вдали от рабочей зоны — чрезмерно высокой. Получилось бы, что полюс в различных его сечениях загружен по-разному и, главное, неразумно. Чтобы этого не происходило, полюсам придают коническую форму. Тогда меньшему потоку будет соответствовать меньшее сечение, и индукция во всех сечениях станет одинаковой, а полюс равномерно нагруженным. Стараются сделать так, чтобы индукция в полюсе была равна индукции в рабочей зоне, т. е. 1,4…1,7 Тл. Почему нельзя выбрать большую индукцию? В принципе это возможно, однако при более высокой индукции сердечник магнитопровода будет сильно насыщен, и чтобы провести по нему магнитный поток, потребуется большой намагничивающий ток. Кроме того, если полюсы насыщены, трудно обеспечить нужное распределение магнитного поля в рабочей зоне. Конические полюсы электромагнита циклотрона чаще всего изготовляют из одной стальной поковки. На полюсах закрепляют главные катушки, создающие сильное магнитное поле. Их обычно изготовляют из толстой (сечением 50…100 мм2) медной или алюминиевой шины с отверстием внутри для охлаждающей воды. Кроме основной в циклотронах имеется дополнительная обмотка, расположенная около зазора. Она состоит из двух катушек, размещенных вблизи среза полюса. Эти катушки предназначены для "нацеливания" частиц на мишень, иными словами, для регулирования высоты плоскости, по которой движутся частицы в циклотроне. Эта плоскость, вопреки ожиданиям, обычно находится не посредине между полюсами из-за различных случайных факторов. Сейф, стальная дверь, баллон с газом, оказавшиеся поблизости, могут вызвать смещение средней плоскости. Один из крупнейших электромагнитов описанного типа установлен в синхроциклотроне на 660 МэВ в Объединенном институте ядерных исследований в Дубне. Диаметр полюсов этого магнита 6 м, масса 7 тыс. т. Несколько уступает ему в размерах синхроциклотрон в Беркли. Массу магнитов (т) циклотронов можно подсчитать по приближенной формуле G = 4,8·10-3·r 2,5, где r — радиус полюса, см. Масса обычных магнитов ускорителей составляет несколько тысяч тонн. Магниты циклотронов и, следовательно, сами циклотроны — это громадные и дорогостоящие сооружения. Их обычно размещают в специальных корпусах, огороженных бетонными стенами толщиной несколько метров, которые служат защитой от излучения. Поворотные двери также делают из бетона. Циклотроны применяют в основном для научных исследований. Однако в последнее время они служат и для получения радиоактивных изотопов, необходимых промышленности и сельскому хозяйству. Сейчас в ряде стран имеется несколько циклотронов, на которых не проводят никаких научных исследований. Эти атомные машины играют роль своеобразного технологического оборудования фабрики, производящей изотопы. Оказывается, есть предел энергии частиц, ускоряемых в циклотроне. Его диктует теория относительности. Известно, что масса любой частицы в соответствии с теорией относительности возрастает по мере приближения скорости частицы к скорости света. Но частица с большой массой менее "поворотлива": она начинает отставать от частиц с меньшей энергией и запаздывает к ускоряющему промежутку, т. е. попадает туда в тот момент, когда ускоряющее электрическое поле мало или направлено навстречу частице. По расчетам верхний предел энергии протонов, получаемых в обычном циклотроне, равен 25 МэВ. Чем больше напряженность магнитного поля, тем больше оборотов делает заряженная частица в единицу времени. Возникает вопрос: нельзя ли сделать так, чтобы от центра к краю полюсов магнитное поле увеличивалось. Тогда приращение массы и, следовательно, "неповоротливость" частицы с ростом ее энергии могли бы быть скомпенсированы, а энергия частиц, получаемых в циклотроне, увеличена. Но в циклотронах делают наоборот: магнитное поле к краю полюса снижают, осуществляя этим вертикальную фокусировку. Как примирить эти противоположные требования? Как одновременно иметь вертикальную фокусировку и увеличить поле от центра полюса с периферии? Этой задачей интересовались давно. Еще в 1938 г. американский ученый Томас предложил формулу, в соответствии с которой должно изменяться магнитное поле в зазоре циклотрона с тем, чтобы эти два условия обеспечивались одновременно. Однако форма полюса при этом оказалась чересчур сложной. Поэтому идея "изохронного" циклотрона имела в то время немного приверженцев. Со временем положение изменилось. Инженеры-физики предложили вместо сложных полюсов Томаса использовать обычные цилиндрические полюсы, покрытые стальными накладками простой формы. Как выяснилось, такие накладки обеспечивают одновременное нарастание поля по радиусу и вертикальную фокусировку. Для коррекции поля в зазоре изохронного циклотрона обычно применяют сложную систему концентрических и секторных корректирующих обмоток и накладок. Изохронные циклотроны позволяют повысить энергию частиц, получаемых на ускорителях этого типа, до 700…800 МэВ. Дальнейшее увеличение энергии — довольно сложная проблема, так как по технологическим причинам трудно точно выдержать все требования к конфигурациям магнитного поля циклотронов столь высоких энергий. В синхроциклотронах, или фазотронах, установлены аналогичные магнитные системы с тем лишь отличием, что частота ускоряющего напряжения по мере возрастания энергии частиц уменьшается; это позволяет отяжелевшим частицам вовремя проходить ускоряющий промежуток. Такое изменение частоты эквивалентно изменению поля в изохронном циклотроне. Предел энергии частиц, получаемых в синхроциклотронах, также составляет 700…800 МэВ. Магниты циклотронного типа устанавливаются и на микротронах, которые служат для резонансного ускорения электронов в электрическом поле высокой частоты. В магнитах микротронов обычно используется магнитное поле примерно в 10 раз меньшее, чем в циклотронах. В силу различных причин физического и технического характера (о некоторых из них мы уже говорили) невозможно создать обычные циклотроны с энергией выше 25 МэВ, а изохронные циклотроны и синхроциклотроны — с энергией выше 800 МэВ. Однако имеются еще экономические факторы, ограничивающие создание сверхмощных ускорителей. Подсчитаем, например, массу циклонического ускорителя на энергию 10 тыс. МэВ или 10 ГэВ. Если магнитное поле на конечной орбите составит 1,45 Тл, то ее радиус должен быть примерно равным 25 м. Подставив это значение в приведенное ранее выражение для массы магнитаG = 4,8·10-3·r2,5, получим, что масса такого магнита составляет 1,5 млн. т. Сама постановка вопроса о построении такого магнита была бы беспредметной. Почему это происходит? Почему циклотрон на большую энергию имеет такую большую массу? Первая причина, очевидно, заключается в том, что мы выбрали небольшое магнитное поле. Если бы удалось это поле в несколько раз повысить, во столько же раз можно было бы снизить радиус и во столько же в степени два с половиной раза снизить массу магнита. Однако значительно повысить магнитное поле в циклотронах нельзя, так как сталь будет сильно насыщаться. Другая причина, вызывающая необходимость столь большой массы магнита, объясняется самим принципом работы циклотрона. Поскольку его магнитное поле постоянно во времени, частица, приобретающая в ускоряющем промежутке очередную "порцию" энергии, движется по орбите большего радиуса, и траектория ее движения напоминает спираль. Именно эта спиралевидность орбиты вынуждает иметь в циклотроне полный набор орбит различных радиусов — от нуля до радиуса конечной орбиты. Однако, видимо, нет неизбежной необходимости иметь в ускорителе полный набор орбит различных радиусов. Если бы магнитное поле в ускорителе с ростом энергии частиц менялось, то согласно формуле r = mv/H радиус орбиты мог бы оставаться всегда постоянным. Для этого нужно лишь обеспечить закон изменения магнитного поля магнита во времени, приближающийся к закону изменения во времени энергии частиц. В этом случае стало бы возможным вместо цилиндрических полюсов оставить узкое кольцо по краю полюса, а сердцевину полюса убрать вообще. Такие ускорители позволяют при относительно небольшой (по сравнению с гипотетическим циклотроном на ту же энергию) стоимости получать пучки частиц с колоссальными энергиями. Кольцевые ускорители были главным достижением создателей ускорительной техники после Лоуренса и Векслера. Природа давно оценила преимущества трубчатых конструкций. Распилите кость — она внутри полая. Если бы она не была пустотелой, она была бы тяжелее, но не прочнее. И природа выбрала инженерно правильное и, следовательно, эстетически безупречное решение. Кольцевой ускоритель — это ускоритель Лоуренса и Векслера, у которого вынута сердцевина полюса магнита и оставлено лишь узкое кольцо. Масса магнита снижается при этом в сотни раз, а ускоритель приобретает правильные, почти архитектурные формы. Красота этого решения — в глубочайшей технологической целесообразности. Кольцевые ускорители включают синхротроны и синхрофазотроны — самые крупные и дорогостоящие физические приборы, когда-либо находившиеся в распоряжении человека. Диаметр кольцевых магнитов таких ускорителей равен нескольким километрам, магнитная система кольцевых ускорителей обычно состоит из нескольких отдельных секторных магнитов, составляющих в плане кольцо. Между этими секторными магнитами находятся ускоряющие промежутки. Стоимость магнитов синхротронов и синхрофазотронов (между этими двумя типами ускорителей различие невелико) составляет около половины стоимости всего синхротрона.
    Пирамиды ядерного века(продолжение)
    Категория: Магнит за три тысячелетия. (В. Карцев) | Добавил: Никс (11.05.2015)
    Просмотров: 148 | Рейтинг: 0.0/0
    Всего комментариев: 0
    Добавлять комментарии могут только зарегистрированные пользователи.
    [ Регистрация | Вход ]
    Форма входа

    Поиск
    Новости астрофизики
    Пчеловодство для народа
    Copyright MyCorp © 2017
    Бесплатный конструктор сайтов - uCozЯндекс.Метрика